Sensor-scheduling simulation of disparate sensors for Space Situational Awareness

نویسندگان

  • Tyler A. Hobson
  • Vaughan L. Clarkson
چکیده

The art and science of space situational awareness (SSA) has been practised and developed from the time of Sputnik. However, recent developments, such as the accelerating pace of satellite launch, the proliferation of launch capable agencies, both commercial and sovereign, and recent well-publicised collisions involving man-made space objects, has further magnified the importance of timely and accurate SSA. The United States Strategic Command (USSTRATCOM) operates the Space Surveillance Network (SSN), a global network of sensors tasked with maintaining SSA. The rapidly increasing number of resident space objects will require commensurate improvements in the SSN. Sensors are scarce resources that must be scheduled judiciously to obtain measurements of maximum utility. Improvements in sensor scheduling and fusion, can serve to reduce the number of additional sensors that may be required. Recently, Hill et al. [1] have proposed and developed a simulation environment named TASMAN (Tasking Autonomous Sensors in a Multiple Application Network) to enable testing of alternative scheduling strategies within a simulated multi-sensor, multi-target environment. TASMAN simulates a high-fidelity, hardware-in-the-loop system by running multiple machines with different roles in parallel. At present, TASMAN is limited to simulations involving electro-optic sensors. Its high fidelity is at once a feature and a limitation, since supercomputing is required to run simulations of appreciable scale. In this paper, we describe an alternative, modular and scalable SSA simulation system that can extend the work of Hill et al with reduced complexity, albeit also with reduced fidelity. The tool has been developed in MATLAB and therefore can be run on a very wide range of computing platforms. It can also make use of MATLAB’s parallel processing capabilities to obtain considerable speed-up. The speed and flexibility so obtained can be used to quickly test scheduling algorithms even with a relatively large number of space objects. We further describe an application of the tool by exploring how the relative mixture of electro-optical and radar sensors can impact the scheduling, fusion and achievable accuracy of an SSA system. By varying the mixture of sensor types, we are able to characterise the main advantages and disadvantages of each configuration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted and Comprehensive Space-Environment Sensors: Description and Recommendations

We discuss the roles of the two classes of space-environment sensors on operational space systems: (1) Targeted sensors capable of measuring the environment and effects at a level sufficient for providing situational awareness for the host spacecraft and (2) Comprehensive sensors capable of providing detailed environment measurements that can be mapped to a broad region of near-Earth space, pro...

متن کامل

Improving Energy-Efficient Target Coverage in Visual Sensor Networks

Target coverage is one of the important problems in visual sensor networks. The coverage should be accompanied with an efficient use of energy in order to increase the network lifetime. In this paper, we address the maximum lifetime for visual sensor networks (MLV) problem by maximizing the network lifetime while covering all the targets. For this purpose, we develop a simulated annealing (SA) ...

متن کامل

Autonomy Architecture for a Raven-class Telescope with Space Situational Awareness Applications

This paper investigates possible autonomy architecture designs of a Raven-class telescope as applied to the tracking and high level characterization problem in Space Situational Awareness (SSA). Various levels of autonomy are defined and existing systems and capabilities are discussed. Telescope interactions with distributed sensor networks such as the Space Surveillance Network (SSN) are revie...

متن کامل

SSA Sensor Tasking Approach for Improved Orbit Determination Accuracies and More Efficient Use of Ground Assets

Current SSA sensor tasking and scheduling is not centrally coordinated or optimized for either orbit determination quality or efficient use of sensor resources. By applying readily available capabilities for centrally generating deconflicted schedules for all available sensors and determining optimal tasking times, both the quality of determined orbits (and thus situational awareness) and the e...

متن کامل

Aas 13-359 Autonomy Architecture for a Raven-class Telescope with Space Situational Awareness Applications

This paper investigates possible autonomy architecture designs of a Raven-class telescope as applied to the tracking and high level characterization problem in Space Situational Awareness (SSA). Various levels of autonomy are defined and existing systems and capabilities are discussed. Telescope interactions with distributed sensor networks such as the Space Surveillance Network (SSN) are revie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011